Lotus japonicus alters in planta fitness of Mesorhizobium loti dependent on symbiotic nitrogen fixation

نویسندگان

  • Kenjiro W Quides
  • Glenna M Stomackin
  • Hsu-Han Lee
  • Jeff H Chang
  • Joel L Sachs
چکیده

Rhizobial bacteria are known for their capacity to fix nitrogen for legume hosts. However ineffective rhizobial genotypes exist and can trigger the formation of nodules but fix little if any nitrogen for hosts. Legumes must employ mechanisms to minimize exploitation by the ineffective rhizobial genotypes to limit fitness costs and stabilize the symbiosis. Here we address two key questions about these host mechanisms. What stages of the interaction are controlled by the host, and can hosts detect subtle differences in nitrogen fixation? We provide the first explicit evidence for adaptive host control in the interaction between Lotus japonicus and Mesorhizobium loti. In both single inoculation and co-inoculation experiments, less effective rhizobial strains exhibited reduced in planta fitness relative to the wildtype M. loti. We uncovered evidence of host control during nodule formation and during post-infection proliferation of symbionts within nodules. We found a linear relationship between rhizobial fitness and symbiotic effectiveness. Our results suggest that L. japonicus can adaptively modulate the fitness of symbionts as a continuous response to symbiotic nitrogen fixation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whole-Genome Sequence of the Nitrogen-Fixing Symbiotic Rhizobium Mesorhizobium loti Strain TONO

Mesorhizobium loti is the nitrogen-fixing microsymbiont for legumes of the genus Lotus Here, we report the whole-genome sequence of a Mesorhizobium loti strain, TONO, which is used as a symbiont for the model legume Lotus japonicus The whole-genome sequence of the strain TONO will be a solid platform for comparative genomics analyses and for the identification of genes responsible for the symbi...

متن کامل

Hemoglobin LjGlb1-1 is involved in nodulation and regulates the level of nitric oxide in the Lotus japonicus–Mesorhizobium loti symbiosis

Leghemoglobins transport and deliver O2 to the symbiosomes inside legume nodules and are essential for nitrogen fixation. However, the roles of other hemoglobins (Hbs) in the rhizobia-legume symbiosis are unclear. Several Lotus japonicus mutants affecting LjGlb1-1, a non-symbiotic class 1 Hb, have been used to study the function of this protein in symbiosis. Two TILLING alleles with single amin...

متن کامل

Delayed maturation of nodules reduces symbiotic effectiveness of the Lotus japonicus–Rhizobium sp. NGR234 interaction

Lotus japonicus, a model legume, develops an efficient, nitrogen-fixing symbiosis with Mesorhizobium loti that promotes plant growth. Lotus japonicus also forms functional nodules with Rhizobium sp. NGR234 and R. etli. Yet, in a plant defence-like reaction, nodules induced by R. etli quickly degenerate, thus limiting plant growth. In contrast, nodules containing NGR234 are long-lasting. It was ...

متن کامل

The NifA-RpoN Regulon of Mesorhizobium loti Strain R7A and Its Symbiotic Activation by a Novel LacI/GalR-Family Regulator

Mesorhizobium loti is the microsymbiont of Lotus species, including the model legume L. japonicus. M. loti differs from other rhizobia in that it contains two copies of the key nitrogen fixation regulatory gene nifA, nifA1 and nifA2, both of which are located on the symbiosis island ICEMlSym(R7A). M. loti R7A also contains two rpoN genes, rpoN1 located on the chromosome outside of ICEMlSym(R7A)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017